Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.

Identifieur interne : 000183 ( Main/Exploration ); précédent : 000182; suivant : 000184

Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.

Auteurs : Tyler C. Helmann [États-Unis] ; Adam M. Deutschbauer [États-Unis] ; Steven E. Lindow [États-Unis]

Source :

RBID : pubmed:32986776

Descripteurs français

English descriptors

Abstract

A variety of traits are necessary for bacterial colonization of the interior of plant hosts, including well-studied virulence effectors as well as other phenotypes contributing to bacterial growth and survival within the apoplast. High-throughput methods such as transposon sequencing (TnSeq) are powerful tools to identify such genes in bacterial pathogens. However, there is little information as to the distinctiveness of traits required for bacterial colonization of different hosts. Here, we utilize randomly barcoded TnSeq (RB-TnSeq) to identify the genes that contribute to the ability of Pseudomonas syringae strain B728a to grow within common bean (Phaseolus vulgaris), lima bean (Phaseolus lunatus), and pepper (Capsicum annuum); species representing two different plant families. The magnitude of contribution of most genes to apoplastic fitness in each of the plant hosts was similar. However, 50 genes significantly differed in their fitness contributions to growth within these species. These genes encoded proteins in various functional categories including polysaccharide synthesis and transport, amino acid metabolism and transport, cofactor metabolism, and phytotoxin synthesis and transport. Six genes that encoded unannotated, hypothetical proteins also contributed differentially to growth in these hosts. The genetic repertoire of a relatively promiscuous pathogen such as P. syringae may thus be shaped, at least in part, by the conditional contribution of some fitness determinants.

DOI: 10.1371/journal.pone.0239998
PubMed: 32986776
PubMed Central: PMC7521676


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.</title>
<author>
<name sortKey="Helmann, Tyler C" sort="Helmann, Tyler C" uniqKey="Helmann T" first="Tyler C" last="Helmann">Tyler C. Helmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deutschbauer, Adam M" sort="Deutschbauer, Adam M" uniqKey="Deutschbauer A" first="Adam M" last="Deutschbauer">Adam M. Deutschbauer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lindow, Steven E" sort="Lindow, Steven E" uniqKey="Lindow S" first="Steven E" last="Lindow">Steven E. Lindow</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32986776</idno>
<idno type="pmid">32986776</idno>
<idno type="doi">10.1371/journal.pone.0239998</idno>
<idno type="pmc">PMC7521676</idno>
<idno type="wicri:Area/Main/Corpus">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000088</idno>
<idno type="wicri:Area/Main/Curation">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000088</idno>
<idno type="wicri:Area/Main/Exploration">000088</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.</title>
<author>
<name sortKey="Helmann, Tyler C" sort="Helmann, Tyler C" uniqKey="Helmann T" first="Tyler C" last="Helmann">Tyler C. Helmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deutschbauer, Adam M" sort="Deutschbauer, Adam M" uniqKey="Deutschbauer A" first="Adam M" last="Deutschbauer">Adam M. Deutschbauer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lindow, Steven E" sort="Lindow, Steven E" uniqKey="Lindow S" first="Steven E" last="Lindow">Steven E. Lindow</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of California, Berkeley, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Capsicum (growth & development)</term>
<term>Capsicum (microbiology)</term>
<term>DNA Transposable Elements (genetics)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Phaseolus (growth & development)</term>
<term>Phaseolus (microbiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Pseudomonas Infections (microbiology)</term>
<term>Pseudomonas syringae (genetics)</term>
<term>Pseudomonas syringae (growth & development)</term>
<term>Pseudomonas syringae (pathogenicity)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Capsicum (croissance et développement)</term>
<term>Capsicum (microbiologie)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Infections à Pseudomonas (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phaseolus (croissance et développement)</term>
<term>Phaseolus (microbiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Pseudomonas syringae (croissance et développement)</term>
<term>Pseudomonas syringae (génétique)</term>
<term>Pseudomonas syringae (pathogénicité)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Virulence (génétique)</term>
<term>Éléments transposables d'ADN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA Transposable Elements</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Capsicum</term>
<term>Phaseolus</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pseudomonas syringae</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Capsicum</term>
<term>Phaseolus</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Pseudomonas syringae</term>
<term>Virulence</term>
<term>Éléments transposables d'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Capsicum</term>
<term>Infections à Pseudomonas</term>
<term>Maladies des plantes</term>
<term>Phaseolus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Capsicum</term>
<term>Phaseolus</term>
<term>Plant Diseases</term>
<term>Pseudomonas Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Genes, Bacterial</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes bactériens</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A variety of traits are necessary for bacterial colonization of the interior of plant hosts, including well-studied virulence effectors as well as other phenotypes contributing to bacterial growth and survival within the apoplast. High-throughput methods such as transposon sequencing (TnSeq) are powerful tools to identify such genes in bacterial pathogens. However, there is little information as to the distinctiveness of traits required for bacterial colonization of different hosts. Here, we utilize randomly barcoded TnSeq (RB-TnSeq) to identify the genes that contribute to the ability of Pseudomonas syringae strain B728a to grow within common bean (Phaseolus vulgaris), lima bean (Phaseolus lunatus), and pepper (Capsicum annuum); species representing two different plant families. The magnitude of contribution of most genes to apoplastic fitness in each of the plant hosts was similar. However, 50 genes significantly differed in their fitness contributions to growth within these species. These genes encoded proteins in various functional categories including polysaccharide synthesis and transport, amino acid metabolism and transport, cofactor metabolism, and phytotoxin synthesis and transport. Six genes that encoded unannotated, hypothetical proteins also contributed differentially to growth in these hosts. The genetic repertoire of a relatively promiscuous pathogen such as P. syringae may thus be shaped, at least in part, by the conditional contribution of some fitness determinants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32986776</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.</ArticleTitle>
<Pagination>
<MedlinePgn>e0239998</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0239998</ELocationID>
<Abstract>
<AbstractText>A variety of traits are necessary for bacterial colonization of the interior of plant hosts, including well-studied virulence effectors as well as other phenotypes contributing to bacterial growth and survival within the apoplast. High-throughput methods such as transposon sequencing (TnSeq) are powerful tools to identify such genes in bacterial pathogens. However, there is little information as to the distinctiveness of traits required for bacterial colonization of different hosts. Here, we utilize randomly barcoded TnSeq (RB-TnSeq) to identify the genes that contribute to the ability of Pseudomonas syringae strain B728a to grow within common bean (Phaseolus vulgaris), lima bean (Phaseolus lunatus), and pepper (Capsicum annuum); species representing two different plant families. The magnitude of contribution of most genes to apoplastic fitness in each of the plant hosts was similar. However, 50 genes significantly differed in their fitness contributions to growth within these species. These genes encoded proteins in various functional categories including polysaccharide synthesis and transport, amino acid metabolism and transport, cofactor metabolism, and phytotoxin synthesis and transport. Six genes that encoded unannotated, hypothetical proteins also contributed differentially to growth in these hosts. The genetic repertoire of a relatively promiscuous pathogen such as P. syringae may thus be shaped, at least in part, by the conditional contribution of some fitness determinants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Helmann</LastName>
<ForeName>Tyler C</ForeName>
<Initials>TC</Initials>
<Identifier Source="ORCID">0000-0002-8431-6461</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deutschbauer</LastName>
<ForeName>Adam M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindow</LastName>
<ForeName>Steven E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002212" MajorTopicYN="N">Capsicum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="Y">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027805" MajorTopicYN="N">Phaseolus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011552" MajorTopicYN="N">Pseudomonas Infections</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>17</Hour>
<Minute>12</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32986776</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0239998</ArticleId>
<ArticleId IdType="pii">PONE-D-20-24902</ArticleId>
<ArticleId IdType="pmc">PMC7521676</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2016 Oct;39(10):2172-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27239727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:533-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21438680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1683-1698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18900-18910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31484768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Jun;63(2):266-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:101-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D666-D677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30289528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Aug;33(4):712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 May;16(5):316-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23319638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb 26;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29480976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Apr;65(4):1435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10103233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 May 12;6(3):e00306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25968644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Sep;64(3):624-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10974129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Nov 23;539(7630):524-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27882964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:385-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Sep 22;15(9):e2002860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28938018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 May 20;1597(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12009406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Feb;12(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Feb;20(2):287-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30267562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:85-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Oct 29;10(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31662463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 May;557(7706):503-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29769716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Apr;10(3):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9100379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):27-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2003 May;149(Pt 5):1127-1138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11064-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jun;54(6):1345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347644</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Helmann, Tyler C" sort="Helmann, Tyler C" uniqKey="Helmann T" first="Tyler C" last="Helmann">Tyler C. Helmann</name>
</region>
<name sortKey="Deutschbauer, Adam M" sort="Deutschbauer, Adam M" uniqKey="Deutschbauer A" first="Adam M" last="Deutschbauer">Adam M. Deutschbauer</name>
<name sortKey="Deutschbauer, Adam M" sort="Deutschbauer, Adam M" uniqKey="Deutschbauer A" first="Adam M" last="Deutschbauer">Adam M. Deutschbauer</name>
<name sortKey="Lindow, Steven E" sort="Lindow, Steven E" uniqKey="Lindow S" first="Steven E" last="Lindow">Steven E. Lindow</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32986776
   |texte=   Distinctiveness of genes contributing to growth of Pseudomonas syringae in diverse host plant species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32986776" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020